• Votre sélection est vide.

    Enregistrez les diplômes, parcours ou enseignements de votre choix.

 

Master Informatique - Parcours : Machine learning pour la science des données

 
 
  • ECTS

    120 crédits

  • Niveau d'études visé

    BAC +5 (niveau 7)

  • Durée

    2 ans

  • Langue des enseignements

    Français

Présentation

La plupart des décisions importantes des responsables en entreprise, mais aussi des scientifiques ou des économistes par exemple, sont prises aujourd’hui sur la base de l’analyse de données massives et multi-vues. Ces données sont au cœur du fonctionnement des intelligences artificielles actuelles. Si ces données sont disponibles en abondance (Big data), elles le sont le plus souvent sous forme brute et nécessitent d’abord une réorganisation et un prétraitement éclairés. Ensuite, une phase d’analyse, par des méthodes d’apprentissage machine (Machine Learning) issues de l’intelligence artificielle et de la statistique, est donc nécessaire. C’est l’objet du Master « Machine Learning for Data Science » ou « Apprentissage Machine pour la Science des Données ». Ce master requière des compétences en Informatique et en mathématiques appliquées. Dans M1, des UE spécifiques aux domaines de l’apprentissage machine et de l’intelligence artificielle sont proposées. Le M2 existe en formation initiale (FI) et en alternance (FA).

Ce programme universitaire fait partie de la Graduate School Artificial Intelligence and Data Science d’Université Paris Cité, liant des cours de master et doctorat à des laboratoires de recherche avancés. La Graduate School forme des spécialistes en Intelligence Artificielle et science des données en mettant l'accent sur l'interdisciplinarité. En savoir plus >

Lire plus

Objectifs

Ce master a pour objectifs de

  • former des Data Scientists maitrisant les différentes méthodes d’apprentissage machine (supervisé, non supervisée et semi-supervisé sous différentes approches y compris le deep learning) et capables de concevoir de nouvelles méthodes adaptées aux divers domaines d’activités dans le but d’extraire de la connaissance utile à l’optimisation des offres et services de l’entreprise.
  • permettre de poursuivre en thèse dans le domaine de l’apprentissage machine, l’intelligence artificielle et la science des données sur des sujets d’ordre théorique et appliqué à divers domaines dont le text-mining, le NLP et le Computer vision.

 

Lire plus

Compétences visées

Le Master prépare aux métiers liés au domaine du Machine Learning, l’intelligence artificielle et la science des données. Il permet d’acquérir de nombreuses compétences dans

  • les méthodes de machine learning sous différentes approches y compris le deep learning
  • la statistique et l’algèbre linéaire dans le domaine de la science des données
  • le data engineering
  • la programmation notamment avec R et Python
  • la gestion des données non structurées
  • l’essentiel du Big data et les outils du cloud
  • le Business intelligence et les outils analytiques
  • divers domaines d’applications dont le Text-mining, le NLP, le computer vision, les réseaux sociaux et la bioinformatique.
Lire plus

Programme

Le M1 est organisé en deux semestres comprenant, en plus des enseignements communs avec les autres parcours, des UE spécifiques au parcours MLDS.

En master M2 (FI), les enseignements dispensés sont consacrées exclusivement à l’Apprentissage Machine, l’UE Anglais est également dispensée. Pour répondre efficacement aux objectifs de la formation, tous les enseignements se déroulent dans une salle machine

Lire plus

Stages et projets tutorés

La formation requière la réalisation d’un projet tutoré en première année. Le projet tutoré est programmé en second semestre. Plusieurs sujets sont proposés et s’articulent autour de l’apprentissage machine, l’intelligence artificielle et la science des données. Le stage en première année est optionnel mais recommandé. Par contre, en M2 (FI), un stage de 4 à 6 mois est obligatoire dans une entreprise ou un laboratoire de recherche en France ou à l’International. La soutenance est programmée en septembre.

Le M2 en alternance requière un contrat en apprentissage ou de professionnalisation d’une durée de 1 an au cours duquel plusieurs missions sont confiées à l’apprenti. La soutenance du stage et le rapport de mémoire (missions sur 1 an) clôturent la fin de l’année en juin. Un projet tutoré pluridisciplinaire est également proposé dès le mois de février ; il est évalué par un rapport et une soutenance.

Lire plus

Contrôle des connaissances

100% Contrôle Continu. L’UE stage en M2 (FI et FA) requière une soutenance et une évaluation du rapport de mémoire.

Pour connaitre le détail des modalités de contrôle des connaissances et compétences, nous vous invitons à prendre contact avec l’UFR (voir le lien en savoir+) 

Lire plus

Aménagements particuliers

Pour les étudiants en situation de handicap vous pouvez prendre contact avec le Pôle handicap étudiant - Plus d'informations ici.

Lire plus

Admission

Public cible

Ce master est destiné aux titulaires d’une licence Informatique ou équivalents avec un bon niveau en statistiques et calcul matriciel. Les candidatures de licence Mathématique avec une compétence en informatique attestée par l’obtention d’UE spécifiques à la programmation et aux bases de données sont également étudiées.

Lire plus

Conditions d'admission

Pour accéder au M1

Licence d’informatique ou validation d'acquis personnels et professionnels (VAPP D. 23/08/1985)

Pour accéder au M2 (FI, FA) MLDS

Master 1 en informatique, diplôme d’ingénieurs ou validation d'acquis personnels et professionnels (VAPP D. 23/08/1985)

Lire plus

Pré-requis

Prérequis pour entrer en M1 : Licence d’informatique ou validation d'acquis personnels et professionnels (VAPP D. 23/08/1985)

Prérequis pour entrer en M2 : Master 1 en informatique, diplôme d’ingénieurs ou validation d'acquis personnels et professionnels (VAPP D. 23/08/1985)

 

Lire plus

Modalités de candidature

Retrouvez toutes les informations relatives aux modalités de candidature ici.

Des modalités de candidatures spécifiques peuvent s’appliquer au public de formation professionnelle. Plus d’informations ici.

Dossier de candidatures :

- Lettre de motivation (document obligatoire)

- Curriculum vitae complet (document obligatoire)

- Photocopie des relevés de notes bac et post bac (document obligatoire)

- Lettre de recommandation (document facultatif)

- Dossier VAPP85 (le cas échéant)

Période des candidatures : entre mars et juin

Période des entretiens : mai

Les étudiants souhaitant intégrer un master à Université Paris Cité doivent candidater sur la plateforme de candidature eCandidat.
Ils y trouveront les dates et les modalités de candidatures et pourront déposer leur dossier directement en ligne.

Lire plus

Droits de scolarité

Les droits d'inscription nationaux sont annuels et fixés par le ministère de l'Enseignement supérieur de la Recherche. S’y ajoutent les contributions obligatoires et facultatives selon la situation individuelle de l’étudiant.

Des frais de formation supplémentaires peuvent s’appliquer au public de formation professionnelle. Plus d’informations ici.

Lire plus

Liens utiles

Et après ?

  • 95%

    Taux de réussite (Taux de réussite sur l’année de diplomation 2020-2021 (nombre d’admis par rapport au nombre d’inscrits administratifs))

Poursuites d'études

Avec le master MLDS, vous pouvez ensuite si vous le souhaitez poursuivre vos études en doctorat et réalisé ainsi une thèse en contrat doctoral ou CIFRE en partenariat avec une entreprise.

https://www.parisdescartes.fr/doctorat/

Lire plus

Passerelle

A l’issue de la première année, une réorientation en seconde année vers un autre parcours du Master Informatique est envisageable à l’appréciation du responsable du parcours concerné

Lire plus

Insertion professionnelle

Taux insertion professionnelle 90%

*Enquête du MESRI sur les diplômés 2019, 30 mois après obtention du diplôme.

Effectif des diplômés

Effectif des répondants

Taux de réponse

Part des diplômés en formation initiale

Part des diplômés en formation apprentissage

Part des diplômés en formation continue

18

11

61%

-

-

100%

 

Part des cadres et des professions intermédiaires

Part des emplois stables

Part des emplois à plein temps

Part des emplois en adéquation avec le niveau d'études

Part des emplois en adéquation avec la formation suivie

100%

78%

100%

-

89%

Lire plus

Débouchés professionnels

Avec ce master et en tant que data scientist vous pouvez intégrer petites, moyennes et grandes entreprises dans divers secteurs. Voici une liste de métiers auxquels vous pouvez aussi prétendre : Data engineering, Data Analyst, Architecte et Développeur d’outils d’analyse de données, Concepteur/Développeur de modèles mathématiques/statistiques, Ingénieur Recherche & Développement.

Lire plus

Référentiel

Référentiel ROME

  • Production et exploitation de systèmes d'information
  • Etudes et prospectives socio-économiques
  • Etudes et développement informatique
  • Recherche en sciences de l'univers, de la matière et du vivant
  • Management et ingénierie études, recherche et développement industriel

Référentiel RNCP

39278

Contacts

  • Osman Salem

    Responsable du Master 1
    • osman.salem @ u-paris.fr
  • Mohamed Nadif

    Responsable du diplôme
    • mohamed.nadif @ u-paris.fr

A lire aussi

  • Ajouter à la sélection

    Vous avez formations et cours sauvegardés