ECTS
6 crédits
Description
SL5BE021
The course provides the fundamental concepts of supervised classification via deep learning methods, with typical examples in NLP.
1. General concepts for supervised classification
- methodology
- evaluation metrics
2. A first classifier : k-NN
3. Linear and log-linear models
- linear separability
- prediction with a (log-)linear classifier
- perceptron learning algorithm
- kernel methods
- logistic regression
4. Extension to Multi-layer perceptrons
- non linearity
- fully connected feed-forward neural network
- universal approximation theorem
5. Learning as loss minimization
- usual loss functions
- stochastic gradient descent
- backpropagation algorithm
6. vectorial representations
- word embeddings as dense features
- word embeddings learning
Lab sessions will illustrate the course, introducing in particular:
- tensor manipulation in numpy / pytorch
- sklearn and pytorch libraries
Bibliography
- Hal Daumé III : An introduction to Machine Learning, http://ciml.info/
- “Neural Network Methods in Natural Language Processing”, 2016, Morgan & Claypool
- preliminary version available here : A primer on neural network models for natural language processing (http://u.cs.biu.ac.il/~yogo/nnlp.pdf)
- Goodfellow, Bengio & Courville “Deep Learning”, MIT Press, 2016 http://www.deeplearningbook.org/
Dernière mise à jour le 6 septembre 2021